Math 656 • March 26, 2014

Midterm Examination

1) (16pts) Find all values of z in polar or Cartesian form, and plot them as points in the complex plane:
(a) $z=(1+i)^{i}$
(b) $z=\tanh ^{-1}(-2)$
2) (18pts) For each integral below, describe all singularities of the integrand, and use the most convenient method to calculate the integral. If the integral is zero, explain why.
(a) $\oint_{|z|=1} \frac{d z}{\cosh z}$
(b) $\oint_{|z|=2} \frac{\cos (\pi z) d z}{z^{2}+z}$
(c) $\oint_{|z|=1} \frac{e^{z} d z}{z^{3}+5 i z^{2}}$
3) (14pts) Use the most convenient method to calculate the following integrals over a quartercircle C centered at the origin and connecting point $z=i$ to $z=1$. Is the integral in part (a) singlevalued?
(a) $\int_{C} z\left(z^{2}-3\right)^{1 / 2} d z$
(b) $\int_{C}(\bar{z}+z) d z$
4) (13pts) Find the bound on $\left|\int_{C} \frac{\sin z d z}{z+i}\right|$, where the integration contour C is a semi-circle of radius 2 connecting points -2 and 2 in the upper half-plane.

Pick any three out of the following problems:

5) (13pts) Find and sketch the image of the half-ring $1<|z|<2,0<\arg z<\pi$, under the transformation $w=(i+1) \log z$ (hint: consider this as a composition/sequence of two elementary transformations)
6) (13pts) Consider the function $f(z)=\operatorname{Re}(z)$. Is this function continuous in any part of complex plane? Is it complex-differentiable anywhere? Examine analyticity directly (using limit definition of derivative), and verify your answer using Cauchy-Riemann equations.
7) (13pts) Consider any branch of function $\left(z^{2}+1\right)^{1 / 3}$, describe its branch cut(s) and describe the discontinuity of this function across the branch cut(s).
8) (13pts) Suppose that $f(z)$ is entire. Use Cauchy-Riemann identities to prove that function $\mathrm{F}(z)=\overline{f(\bar{z})}$ is also entire (hint: relate $F(z)=U(x, y)+i V(x, y)$ to $f(z)=u(x, y)+i v(x, y))$
